STEADY-STATE AND PERIODIC MOTIONS
 in the attraction field of a rotating triaxial ellipsoid *

S. G. ZHURAVLEV

The motion of a material point in the field of attraction of a rotating triaxial ellipsoid is examined in the presence of exact commensurability between the triaxial ellipsoid's angular rotation velocity and the average motion of the material point over the orbit. Families of periodic solutions of Schwarzschild type are found for certain commensurabilities of lower order and for values of a parameter characterizing the form of the ellipsoid. It is well known /l/ that the equations of motion of a mass point in the attraction field of a rotating triaxial ellipsoid have periodic solutions under different commensurabilities between the average motion of the mass point and the angular rotation velocity of the ellipsoid.In particular, to a commensurability of the kind $1 / 1$ correspond steady-state motions (libration points) which exist also for bodies of a form more complex than a triaxial ellipsoid /2-5/. The conditions for the existence of the periodic solutions (orbits)mentioned, in the triaxial ellipsoid's attraction field have been investigated only for certain values of eccentricity and inclination. In this regard there is great interest in a more detailed investigation of existence conditions for steady-state, conditionally-periodic and periodic solutions of this problem when the eccentricity and the inclination vary within the limits $0<c<1$ and $0<i<\pi$, respectively.

1. Statement of the problem. Let a mass point move in the attraction field of a homogeneous (or inhomogeneous, but with ellipsoidal layers of identical density) triaxial ellipsoid (a planet) of mass M^{\prime}, rotating with constant angular velocity ω_{0} around one of the principal central axes of inertia. We use the following coordinate systems: l) a rectangular inertial system $O x y z$ with origin at the ellipsoid's center of mass, where the axis $O x$ is directed into the vernal equinox, the plane $O x y$ coincides with the ellipsoid's equatorial plane, and the axis $O z$ is directed towards the world's north pole; 2) a rectangular rotating system $O X Y Z$ with origin at the ellipsoid's center of mass, where the axis $O X$ passes through some zero meridian and is located, together with axis $O Y$, in the ellipsoid's equatorial plane and the axis $O Z$ is directed so that is coincides with the fixed axis $O z$ and is at the same time the ellipsoid's rotation axis; 3) a spherical rotating system red with radius-vector r, longitude λ read off to the east of the zero meridian, and lattitude φ read off to the north of the ellipsoid's equatorial plane.

The equations of motion of the mass point in the triaxial ellipsoid's attraction field, in a spherical coordinate system rotating with constant angular velocity ω_{0}, are of the form

$$
\begin{equation*}
r \cdot \because-r \varphi^{\bullet 2}-r \lambda_{*}^{\cdot 2} \cos ^{2} \varphi=\partial V / \partial r \tag{1.1}
\end{equation*}
$$

$$
d\left(r^{2} \varphi^{*}\right) / d t+r^{2} \lambda_{*} \cdot \sin \varphi \cos \varphi==\partial V / \partial \varphi, \quad d\left(r^{2} \lambda_{*}^{*} \cos ^{2} \varphi\right) / d t=\partial V / \partial \lambda, \quad \lambda_{*}^{*}=\lambda^{*}+\omega_{0}
$$

Here V is the triaxial ellipsoid's gravitational potential, written as

$$
\begin{equation*}
V=\frac{M M}{r}\left[1+C_{20}\left(\frac{r_{0}}{r}\right)^{2} \rho_{2}(\sin \varphi)+C_{22}{ }^{\circ}\left(\frac{r_{0}}{r}\right)^{2} P_{22}(\sin \varphi) \cos 2\left(\lambda-\lambda_{22}\right)\right], \quad\left({ }_{22}{ }^{0}=\sqrt{r_{22}^{2}+S_{22}^{2}}\right. \tag{1.2}
\end{equation*}
$$

Here f is the gravitational constant, r_{0} is the ellipsoid's largest equatorial radius, C_{20}, C_{22} and S_{22} are coefficients characterizing the form of the triaxial ellipsoid, λ_{22} is the angle characterizing the orientation of the major semiaxis of the equatorial section of the ellipsoid relative to the zero meridian, $P_{2}(\sin \varphi)$ and $P_{22}(\sin \varphi)$ are the Legendre polynomial and the Legendre associated function, respectively. The expansion of potential V in the form (l. 2) is due to the choice of the coordinate systems $r \varphi \lambda$ and $O X Y Z$, and is obtained under the assumption that axis $O Z$ coincides with a principal central inertia axis of the ellipsoid, with due regard to triaxial ellipsoid's second-order moments of inertia. The problem is to find steadystate and periodic solutions of equation system (l.l) defining the motion of a mass point in the attraction field of a triaxial ellipsoid with gravitational potential (1.2).
2. Passage to canonic variables. We select one of the Keplerian systems of elements, for example, $p(a), e, i, \Omega, \omega$ and v, where $p(a)$ is a parameter (major semiaxis) of the orbit, e is the eccentricity, i is the inclination, Ω is the longitude of the orbit's ascension angle, read off from the fixed axis $O x, \omega$ is the argument of the perigee, and v is the true anomaly, and we pass, in accord with $/ 4 /$, to dimensionless variables by the formulas

$$
p^{*}=p p_{0}{ }^{-1}, \quad r^{*}=r p_{0}^{-1}, \quad \tau=\mu^{1 /} \cdot p_{0}{ }^{-1 / t} t, \quad n^{*}=\mu^{-1} \cdot p p_{0}^{3 / 2} n, \quad \omega_{0}^{*}=\mu^{-t /} \cdot p_{0}^{3 / 2}=\omega_{0}, \quad \mu=j M
$$

so that $\omega_{0}{ }^{*}=p_{0}{ }^{*}=\mu=1$. Here n is the average motion, p_{0} is the orbit's parameter at the initial instant, t is time.

We introduce a small parameter x by the formula

$$
x=-3 C_{20}\left(r_{0} / p_{0}\right)^{2}
$$

We write the problem's perturbing function as

$$
U=\frac{p_{0}}{\mu x}\left(V-\frac{\mu}{r}\right)
$$

and we use the expansions /6/

$$
\left(\frac{r}{a}\right)^{n} \cos m v=\sum_{k=0} C_{k}^{n, m} \cos k M, \quad\left(\frac{r}{a}\right)^{n} \sin m v=\sum_{k=0} S_{k}^{n, m} \sin k M
$$

($C_{k}{ }^{n}, m$ and $S_{k}{ }^{n}, m$ are power series in the eccentricity e, M is the mean anomaly). After the transformations indicated have been effected the equation system (1.1) takes the Lagrange form, while the perturbing function U is written as

$$
\begin{aligned}
& a_{k}=a^{*-3} f_{k}, \quad f_{k_{1}, 000}-1 / 6\left(1-3 / 2 \sin ^{2} i\right)\left(C_{k_{1}}^{-3,0}, \quad f_{k 0, \pm 2,4}=1 / k \sin ^{2} i\left(C_{k_{1}}^{-3,2} \pm S_{k_{1},-3,2}\right)\right. \\
& k_{2} \neq 0, \quad f_{k}=3 / 4 x b_{22} g_{k}, \quad b_{22}=C_{22}{ }^{\circ} x^{-2}\left(r_{0} / p_{0}\right)^{2}, \quad g_{k_{i, 1} 10,-1}=2 \sin ^{2} i C_{k_{1}}{ }^{-3,0}, \quad g_{k t,-1,01}=g_{k_{1,10,-1}} \\
& g_{k_{1, ~} \pm 2, \pm 2, \mp 2}=(1+\cos i)^{2}\left(C_{k_{1}}^{-3,2} \pm S_{k_{1}}^{-3,2}\right), \quad g_{k_{1,} \pm 2, \mp 2, \mp 2}=(1-\cos i)^{2}\left(C_{k_{1}}^{-3,2} \pm S_{k_{1}}^{-3,2}\right)
\end{aligned}
$$

The structure of the perturbing function is such that $k_{3}=-k_{4}$. Therefore, by introducing Delaunay's canonic elements

$$
\begin{gather*}
x_{1}=L=\sqrt{a^{*}}, \quad y_{1}=l=M, \quad x_{2}=G=\sqrt{a^{*}\left(1-e^{2}\right)}, y_{2}=g=\omega \tag{2.1}\\
x_{3}=H=\sqrt{a^{*}\left(1-e^{2}\right)} \cos i, \quad y_{3}=h-\tau=\Omega-\tau
\end{gather*}
$$

and analyzing the motion in the rotating coordinate system $O X Y Z$, we write the equations of motion of the mass point in the autonomous canonic form

$$
\begin{gathered}
d x_{j} / d \tau=\partial F^{\prime} / \partial y_{j}, \quad d y_{j} / d \tau=-\partial F^{\prime} / \partial x_{j} \quad(j=1,2,3) \\
F^{\prime}=F_{0}{ }^{\prime}+x F_{1}^{\prime}, \quad F_{0}^{\prime}=1 / 2 x_{1}{ }^{-2}+x_{3}, \quad-F_{1}^{\prime}=U=\sum_{\|k\| \geqslant 0} A_{k}\left(x_{j}\right) \cos \left(k_{1} y_{1}+k_{2} y_{2} \quad k_{3} y_{13}\right)
\end{gathered}
$$

Here F^{\prime} is the system's Hamiltonian; the coefficients $A_{r}\left(x_{j}\right)$ are determined from the coefficients $a_{k}\left(a^{*}, e, i\right)$, allowing for (2.1).

We shall examine the resonance cases of motion of the mass point, when a sharp commensurability occurs between the average motion of the mass point on the orbit and the triaxial ellipsoid's angular rotation velocity. The commensurability condition can be written as $\quad n^{*}=(p+q) / p, \quad$ where p and q are integers. To investigate the steady-state and periodic solutions in the resonance cases we introduce the following system of canonic variables:

$$
X_{1}=s L-p H, \quad X_{2}=G-H, \quad X_{3}=H, \quad Y_{1}=l / s, \quad Y_{2}=g, \quad Y_{3}=p l / s+g+h-\tau
$$

Here Y_{3} is the critical argument or the Delaunay anomaly; $s=p+q$. The differential equations (2.2) in the variables X_{j} and Y_{j} also have a canonic form
$d X_{j} / d \tau=\partial F / \partial Y_{j}, \quad d Y_{j} / d \tau=-\partial F / \partial X_{j} \quad(j=1,2,3), \quad F=F_{0}+x F_{1}, \quad F_{0}=1 /{ }_{2} s^{2}\left(X_{1}+p X_{3}\right)^{-2}+X_{3}$ (2.3)

$$
-F_{1}=\sum_{\|k\| \geqslant 0} A_{k}^{*}\left(X_{j}\right) \cos \left[\left(k_{1} s+m p\right) Y_{1}+k_{2} Y_{2}\left[-k_{3} Y_{3}\right\}, \quad m=0, \pm 1, \pm 2\right.
$$

3. Steady-state solutions. We seek the steady-state solutions of equation system (2.3). Using the Tseipel transformation we eliminate from the perturbing part F_{1} of Hamiltonian F the short-period terms, i.e., the terms containing the fast variable Y_{1}, and we write F_{1} as

$$
F_{1}^{*}=F_{1}{ }^{\text {sec }}+F_{1}{ }^{\text {res }}, \quad F_{1}^{\text {sec }}=\frac{s^{6}}{12\left(X_{1}+p X_{3}\right)^{6}}(3 \alpha-1) C_{0}^{-3,2}\left(X_{j}\right), \quad F_{1}^{\mathrm{res}}=\frac{3 x i_{2 x^{4}}{ }^{6}}{4\left(X_{1}-p X_{3}\right)^{6}} \sum_{i=1}^{3}\left(\mathrm{I}_{i}\right.
$$

$$
\begin{gathered}
\Phi_{1}=\left(1-\alpha^{2}\right) C_{k}^{-3,0}\left(X_{j}\right) \cos \left[(k s-2 p) Y_{1}-2 Y_{2}+2 Y_{3}\right] \\
\Phi_{2}=1 / 2(1+\alpha)^{2}\left[C_{k}^{-3,2}\left(X_{j}\right)+S_{k}^{-3,2}\left(X_{j}\right)\right] \cos \left[(k s-2 p) Y_{1}+2 Y_{3}\right] \\
\Phi_{3}=1 / 2(1-\alpha)^{2}\left[C_{k}^{-3,2}\left(X_{j}\right)-S_{k}^{-3,2}\left(X_{j}\right)\right] \cos \left[(k s-2 p) Y_{1}-4 Y_{2}+2 Y_{3}\right] \quad \alpha=X_{3} /\left(X_{2}+X_{3}\right)
\end{gathered}
$$

Thus，$F_{1}{ }^{\text {sec }}$ has one and the same form under all commensurabilities，while $F_{1}{ }^{\text {res }}$ depends upon the form of the commensurability，in particular，on the values of k, s and p ．Table l shows the number of the harmonics occurring in the corresponding F_{1} res for the commensurabilities most important for the given problem．

Table $1 \quad Y_{i}$ We shall seek the steady－state solutions $X_{j}=$ const（ $j=1,2,3$ ）and $Y_{i}=$ const（ $i=2,3$ ）of equation system（2．3）with Hamiltonian $F^{*}=F_{0}+$ $x F_{1}{ }^{*}$ ．In this case Eqs．（2．3）are written as

$$
\begin{align*}
& \frac{d X_{1}}{d \tau}=0, \quad \frac{d Y_{1}}{d \tau}=s^{-1}\left(n^{*}-x \frac{\partial F_{1}^{*}}{\partial L}\right), \frac{d X_{2}}{d \tau}=x \frac{\partial F_{1}^{\mathrm{res}}}{\partial Y_{2}}=0, \quad \frac{d Y_{2}}{d \tau}=-x \frac{\partial F_{1}^{*}}{\partial G}=0 \tag{3.1}\\
& \frac{d X_{3}}{d \tau}=x \frac{\partial F_{1}^{\mathrm{res}}}{\partial Y_{3}}=0, \quad \frac{d Y_{3}}{d \tau}=\left\{n^{*}-\frac{s}{p}-x\left[\frac{\partial F_{1}^{*}}{\partial L}+\frac{s}{p}\left(\frac{\partial F_{1}^{*}}{\partial G}+\frac{\partial F_{1} *}{\partial H}\right)\right]\right\}=0
\end{align*}
$$

Bear in mind here that

$$
s^{3}\left(X_{1}+p X_{3}\right)^{-s}=L^{-3}=n^{*}
$$

The structure of function $F_{1}{ }^{\text {res }}$ for the commensurabilities considered（see Table l）are such that the third and the fifth equations in（3．1）are satisfied for the values of the angular variables Y_{2} and Y_{3} shown in Table 2，and，thus，there are 16 types of solutions．

Table 2

	Y_{2}	F_{3}	苓	$\dot{x}=$	Y_{3}	茄	X_{2}	Y	答	$1:$	Y_{3}
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	0 $\pi / 2$ π $3 \pi / 2$	0	5 6 7 8	0 $\pi / 2$ π $3 \pi / 2$	$\pi / 2$	9 10 11 12	0 $\pi / 2$ π $3 \pi / 2$	π	13 14 15 16	0 $\pi / 2$ π $3 \pi / 2$	$3 \pi / 2$

For the values indicated in Table 2 for the angular variables Y_{2} and Y_{3} the variables X_{2} and X_{3} are constants and，consequently，the orbit＇s eccentricity e and inclination i are constants．The dependency between e and i is found from the fourth equation in（3．1），which， allowing for relations（2．1），we write as

$$
\Phi(e, i)=\frac{x}{e \sin i \sqrt{a^{*}\left(1-e^{2}\right)}}\left[e \cos i \frac{\partial F_{1}^{*}}{\partial i}-\left(1-e^{2}\right) \sin i \frac{\partial F_{1}^{*}}{\partial e}\right]=0
$$

Apparently，this equation was first obtained by Charlier in connection with the three－body problem／7／and was studied by many authors／8－13／by numerical methods．In the problem being analyzed the solution of the third equation in（3．1）was determined numerically for eccentricity in the range $0<e<1.0$ and inclination in the range $0<i<\pi$ ，where terms up to e^{10} were retained in the expansions of $C_{k}^{n, m}$ and $S_{k}^{n, m}$（the theoretical limit of the convergence of the expansions mentioned equals $e=0.6627 / 7 /$ ）．

The form of the triaxial ellipsoid was characterized by a parameter x defining the polar contraction of the ellipsoid and a parameter x_{1} defining the equatorial contraction of the ellipsoid．Parameter x_{1} was chosen in the form $x_{1} \cong x^{2}$ ，i．e．，the ratio between the con－ tractions was retained the same as obtains for a planet of the Earth group．The calculation results are shown in Figs．1－4 as the curves $\Phi(e, i)=0$ ．In Fig． 1 the curves correspond to commensurability $1 / 1$ and to $x=10^{-3}$ ．The solid curve refers to solutions of type 2，4， $5,7,10,12,13,15$ ，while the dash－dotted curve refers to solutions of type $1,3,6,8,9$ ， 11，14， 16 （see Table 2）．The curves in Figs． 2 and 3 correspond to commensurability $1 / 1$ and to $x=10^{-2}$ ．The solid curves refer to solutions of type 1，3，9，ll（in Fig．2）and type 2， 4，10， 12 （in Fig．3），while the dash－dotted curves refer to solutions of type 6，8，14， 16 （in Fig．2）and type 5，7，13， 15 （in Fig．3）．Finally，in Fig．4，corresponding to commensura－ bility $1 / 4$ and to $x=10^{-2}$ ，the solid curves refer to solutions of type $1,3,9,11$ ，while the dash－dotted curves refer to solutions of type $6,8,14,16$ ；the curves corresponding to the solution of the equation $\partial F_{1} * / \partial H=0$ are shown by the dashed lines．Solutions of the cqua－
tion $\Psi(e, i)=0$ for other commensurabilities do not differ qualitatively trom those shown in Figs.1-4. The curves shown in Figs.1-4 define a family of solutions for which $Y_{2}=$ const.

Let us now consider the sixth equation in (3.1). To obtain the steady-state solution $Y_{3}=$ const of this equation it is necessary that the average motion n^{*} equal

$$
\begin{equation*}
n^{*}=s / p+\chi\left(\partial F_{1}^{*} / \partial L+\left(s p^{-1}\right) \partial F_{1}^{*} / \partial H\right) \tag{3.2}
\end{equation*}
$$

In the expression we have taken into account that $\partial F_{1} * / \partial G=0$ on the curves $\Phi_{1}(e, i)=0$. Finally, the variation of Y_{1}, being the fast variable, on a steady-state solution is determined by the second equation in (3.1) with a substitution of the expression found for n. As a result we obtain

$$
Y_{1}-(1 / p)\left(1+\chi \partial F_{1}^{*} / \partial H\right)
$$

The steady-state solutions obtained are synodic, i.e., after the passing of a period T the relative position of the material point and the triaxial ellipsoid in the rotating coordinate system is repeated. Although the arguments of the pericenter Y_{2} and of the Delaunay anomaly Y_{3} for the steady-state solution found retain constant values, the orbit's node is shifted even if we do not take into account the short-period terms of the perturbing function. Thus, the steady-state solutions found generate conditionally-periodic solutions. Analogous solutions in the three-body problem have come to be called solutions of Schwarzschild type /8/. These solutions differ from the Poincare solutions of the third kind in which after the passing of one period the relative positions arc repeated in the absolutc coordinate system and, consequently, the orbit's node is fixed.
4. Conditionally-periodic and periodic solutions. Thus, with due regard to the short-period terms of the perturbing function F_{1} the solutions are steady-state: the variation of the orbital elements are of an oscillatory nature relative to their steady-state values. The orbit's node precesses in the rotating coordinate system and, therefore, the solutions obtained are essentially conditionally-periodic. In order that the solutions found be periodic Poincare solutions of the third kind, it is necessary that the condition $\Omega^{\circ}=$ $-\varkappa \partial F_{1}^{*} / \partial H=0$ be fulfilled, i.e.,

$$
\begin{equation*}
\left.\Phi_{1}(e, i)=\left[a^{*}\left(1-e^{2}\right)\right]^{-1 /(s i n} i\right)^{-\mathbf{1}} \partial F_{1} * / \partial i=0 \tag{4.1}
\end{equation*}
$$

Equation (4.1) was solved numerically; the resulting curves $\Phi(e, i)=0$ are shown by dashed lines in Figs. 1-4. Thus, for the parameter values e_{0} and i_{0}, corresponding to points of
intersection of curves $\Phi(e, i)=0$ and $\Phi_{1}(e, i)=0$, there will hold $Y_{1}^{*}=1 / p$ and, after $(p+q)=s$ orbits of the mass point, the following will take their initial values: the variable Y_{1}, being a basic fast variable, and, consequently, the short-period perturbations in all the orbital elements corresponding to the steady-state solutions. The periodic solutions found exist for sufficiently small x. The period T_{1} of the periodic solutions found equals $s T$, where T is the circulation period of the mass point for a given commensurability s / p. We remark that the period of the generating periodic solutions differs from period T since the average motion n^{*} differs from the exact commensurable value s / p on the generating (steady-state) solutions when $\partial F_{1}{ }^{*} / \partial G:=0$ and $\partial F_{1}{ }^{*} / \partial H=0$.
5. Concluding notes. Thus, in all the low-order commensurabilities examined there exist families of Schwarzschild-type periodic solutions, i.e., conditionally-periodic solutions. For paramcter value $x=-10^{-3}$ (typical for the Earth-group planets) the majority of these solutions have an orbit inclination close to 1.108 and 2.033 (the precise value depends on e and x and on the commensurability type s / p). The Poincare periodic solutions of the third kind exist only for values e_{0} and i_{0} corresponding to the points of intersection of curves $\Phi(e, i)=0$ (solid and dash-dotted lines) and curves $\Phi_{1}(e, i)=0$ (dashed lines) in Fig.1-4. In view of the fact that to the points of intersection of the curves mentioned correspond the values $e_{0}>0.8$, exceeding the theoretical limit of convergence ($e=0.6627$) of the expansions used, the question of the existence of periodic Poincare solutions of the third kind in the strict sense remains open. In addition, the cases of small eccentricity and inclination, as well as the limit cases $e \rightarrow 0, e \rightarrow \mathbf{1}, i \rightarrow 0$ and $i \rightarrow \pi$, require a separate analysis.

REFERENCES

l. BATRAKOV, Iu. V., Periodic motions of particle in the gravity field of a rotating triaxial ellipsoid. Biul. Inst. Teoret. Astron. Akad. Nauk SSSR, Vol.6, No.8, 1957.
2. BLITZER, L., DARIS, D. R., de SULIMA, T. H. Equilibrium longitudes of geostationary satellites. AIAA J., Vol.6, No.6, 1968.
3. AKSENOV, E. P., On libration points in the gravitational field of a rotating body. Soobshch. Gos. Astron. Inst. im. P. K. Shternberg, No.115, 1960.
4. ZHURAVLEV, S. G., On steady-state motions in the gravitational field of a rotating body. In: Mathematical Physics, No.20. Kiev, "Naukova Dumka", 1976.
5. ZHURAVLEV, S. G., On stationary points in the attraction fields of the Earth, the Moon dud Mars. Astron. Zh., Vol.54, No.4, 1977.
6. JARNAGIN MILTON, P. Jr. Expansions in Elliptic Motion. Astron. Papers Vol.18, 1965.
7. CHARLIER, C. L. Die Mechanik des Himmels, Berlin, 1927.
8. BATRAKOV, Iu. V., Schwarzschild-type periodic solutions in the restricted three-body problem. Biul. Inst. Teoret. Astron. Akad. Nauk SSSR, Vol.6, No.2, 1955.
9. JEFFERYS, W. H. A new class of periodic solutions of the three-dimensional restricted problem. Astron. J., Vol.71, No. 2, 1966.
10. JEFFERYS, W. H., STANDISH, E. M. Jr. Further periodic solutions of the three-dimensional restricted problem (I), Astron. J., Vol.71, No.10, 1966.
11. JEFFERYS, W. H., STANDISH, E. M. Jr. Further periodic solutions of the three-dimensional restricted problem (II). Astron. J., Vol.77, No.5, 1972.
12. KOZAI, Y. Periodic solutions of the third sort for the restricted problem of three bodies. Proc. Japan. Acad., Vol.45, No.5, 1969.
13. KOZAI, Y. Stationary and periodic solutions for the restricted problem of three bodies in three-dimensional space. In: Periodic orbits, stability and resonances, Dordrecht, Holland, 1970.

