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STEADY-STATE AND PERIODIC NOTIONS 
IN THE ATTRACTION FIELD OF A ROTATING TRIAXIAL ELLIPSOID* 

S. G. ZHURAVLSV 

The motion of a material point in the field of attraction of a rotating triaxial 

ellipsoid is examined in the presence of exact commensurability between the triaxial 

ellipsoid's angular rotation velocity and the average motion of the material point 

over the orbit. Families of periodic solutions of Schwarzschild type are found for 

certain commensurabilities of lower order and for values of a parameter character- 

izing the form of the ellipsoid. It is well known /l/ that the equations of motion 

of a mass point in the attraction field of a rotating triaxial ellipsoid have 

periodic solutions under different commensurabilities between the average motion of 

the mass point and the angular rotation velocity of the ellipsoid.In particular, 

to a commensurability of the kind l/l correspond steady-state motions (libration 

points) which exist also for bodies of a form more complex than a triaxial ellipsoid 

/2-S/. The conditions for the existence of the periodic solutions (orbits)mention- 

ed, in the triaxial ellipsoid's attraction field have been investigated only for 

certain values of eccentricity and inclination. In this regard there is great in- 

terest in a more detailed investigation of existence conditions for steady-state, 

conditionally-periodic and periodic solutions of this problem when the eccentricity 

and the inclination vary within the limits O<e<l and 0< i<n , respectively. 

1. Statement of the problem. Let a mass point move in the attraction field 

of a homogeneous (or inhomogeneous, but with ellipsoidal layers of identical density) triaxial 

ellipsoid ( a planet) of mass a!', rotating with constant angular velocity 00 around one of 

the principal central axes of inertia. We use the following coordinate systems: 1) a rect- 

angular inertial system 0.~~2 with origin at the ellipsoid's center of mass, where the axis 

02 is directed into the vernal equinox, the plane OXY coincides with the ellipsoid's 

equatorial plane, and the axis Oz is directed towards the world's north pole; 2) a rectangular 

rotating system OXYZ with origin at the ellipsoid's center of mass, where the axis OX pass- 

es through some zero meridian and is located, together with axis OY, in the ellipsoid's 

equatorial plane and the axis 02 is directed so that is coincides with the fixed axis bz and 

is at the same time the ellipsoid's rotation axis; 3) a spherical rotating system rr+A with 

radius-vector r, longitude h read off to the east of the zero meridian, and lattitude 'p read 

off to the north of the ellipsoid's equatorial plane. 

The equations of motion of the mass point in the triaxial ellipsoid's attraction field, 

in a spherical coordinate system rotating with constant angular velocity oO, are of the form 

r" - TV.2 - rh,'z CORZ 'p = dV/ i)r (1.1) 

d (r"cp') / dt + r%,’ sin q cos m := dV i &p, d (A.,’ co9 cp) i dt = 31’ I ah, h,’ = A’ + cd0 

Here V is the triaxial ellipsoid's gravitational potential, written as 

Here f is the gravitational constant, r,, is the ellipsoid's largest equatorial radius, C,,,,C,, 

and &, are coefficients characterizing the form of the triaxial ellipsoid, AZ, is the angle 

characterizing the orientation of the major semiaxis of the equatorial section of the ellipsoid 
relative to the zero meridian, P, (Ein cp) and P,,(sin 'p) are the Legendre polynomial and the 
Legendre associated function, respectively. The expansion of potential V in the form (1.2)is 
due to the choice of the coordinate systems rcph and OXYZ, and is obtained under the assump- 

tion that axis OZ coincides with a principal central inertia axis of the ellipsoid, with due 

regard to triaxial ellipsoid's second-order moments of inertia. The problem is to find steady- 

state and periodic solutions of equation system (1.1) defining the motion of a mass point 
in the attraction field of a triaxial ellipsoid with gravitational potential (1.2). 
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2. Passage to canonic variables. We select one of the Keplerian systems of ele- 
ments, for example, ~(a),e,i,&, o and L‘, where ~(a) is a parameter (major semiaxis) of the 

orbit, e is the eccentricity, i is the inclination, Q is the longitude of the orbit's ascen- 

sion angle, read off from the fixed axis Or, w is the argument of the perigee, and u is the 

true anomaly, and we pass, in accord with /4/, to dimensionless variables by the formulas 

p* _ pPO-l, r* : rpO-', T _ kVIJO-'.'?t, n* = p-',I&"i,n, cog* =z p-1' Pa"':oO, IC := j-11' 

so that oO* = pO* = 11 L: 1. Here n is the average motion, pa is the orbit's parameter at the 

initial instant, t is time. 
We introduce a small parameter x by the formula 

x = --:Sc2o (To / p")* 

We write the problem's perturbing function as 

and we use the expansions /6/ 

cos mu = 

Ir=o 

(C,“? “’ and Sp'5 m are power series in the eccentricity e,M is the mean anomaly). After the 

transformations indicated have been effected the equation system (1.1) takes the Lagrange form, 

while the perturbing function U is written as 

er= a*"lh-, fi;,ow = '/6 (1 - 9/2 sin2 i)Q', fh.,0, *2,0 = I/, sin2 i (Ch.>?* _c Sh.I-3T2) 

k, # 0, fh- = ‘Jrnb,,gli, b,, = c,,“x-= (r. / po)2, gr,,~o,-~ = 2 sin2 iCI;,-"90, Rkl,-I,clI = fiir,UI-I 

6%. **, fz,Tz = (1 + COP i)'(C,:,-SJ * &-V), Rhl. 22, 72, f2 (1 - COS i)?((',x-%a * s,,,-3.") 

The structure of the perturbing function is such that k, = -k,. Therefore, by introducing 

Delaunay's canonic elements 

x1 = L = 1/F, y, = 1 = fif, ~2 = G = va* (2 - e”), y, = g = o (2.1) 

x8 = H = f/a* (1 - e") cos i, y,=h--z=Q--z 

and analyzing the motion in the rotating coordinate system OXYZ, we write the equations of 

motion of the mass point in the autonomous canonic form 

G!X~ I dt = JF' I ayj, dyj I do ‘E -JF’ I d.rj (j 7 1. 2, 3) (2.2) 

p’ = F,’ + xF,‘, F,’ = 1/2x1-2 + x3 , - F,’ = U = X Ah. (Xj) COS (klyl + fCzy2 hY:J 
IlkIN 

Here F is the system's Hamiltonian; the coefficients _4, (rj) are determined from the coeffic- 

ients ak (a*, e, i) , allowing for (2.1). 

We shall examine the resonance cases of motion of the mass point, when a sharp com- 

mensurability occurs between the average motion of the mass point on the orbit and the 

triaxial ellipsoid's angular rotation velocity. The commensurability condition can be written 

as n* = (P + 9) /P, where p and 4 are integers. To investigate the steady-state and periodic 

solutions in the resonance cases we introduce the following system of canonic variables: 

X,=sL-ppB, X,=G--II, X,--II, Y, = 1 I s, I;, = g, Y, = pl i S + g -I- II - Z 

Here Y, is the critical argument or the Delaunay anomaly; S -= p -/- Q. The differential equa- 

tions (2.2) in the variables Xj and Yj also have a canonic form 

dXj/dT=8F/i3Yj, dY,/dT---aFJdXj (j =1,2,3), 1:==1;‘,fxF,, F, = ‘/,s2 (X, + pXJ2 + X, (2.3) 

3. Steady-state solutions. We seek the steady-state solutions of equation system 

(2.3). Using the Tseipel transformation we eliminate from the perturbing partF,ofHamiltonian 

F the short-period terms, i.e., the terms containing the fast variable Y,, and we write F, 
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@1 = (I - Ua)Ck-"' (Xj) COS [(kS - 2_D)Y, - 2Y, + 2Y3] 

@)B = ‘12 (1 f u)‘[C~-~~’ (Xj) + Skw312 (X,)1 COS [(ks - 2p)Y, + 2Y3] 

02 = l/z (1 - a)z]C,-3~2 (Xj) - Sk-‘** (Xj)l COS [(ks - 2p)Yl - 4Y, + 2Y3], a = X3 I (X, + X,) 

Thus, FISec has one and the same form under all commensurabilities, while Firm depends upon 

the form of the commensurability, in particular, on the values of k,s and p. Table 1 shows 

the number of the harmonics occurring in the corresponding Fires for the commensurabilities 

most important for the given nroblem. 

- 

- 

Table 1 We-shall seek the steady-state solutions X1 = Censt (j = i,2,3) and 

I 
Yi = const (i = 2,s) of equation system (2.3) with Hamiltonian F+ = F, + 

‘1 (P + a/r 

0 1 131 
-1 w 
-2 113 
-3 114 
Q 115 
1 2/l 

-1 213 

L xF,*. In this case Eqs. (2.3) are written as 

‘I - n 

SL=O 
2 dr 

dyl -s-’ 
’ dr 

4 
F 
8 d-G dFF 

20 

x=X7=0 ( 

1 

3 Bear in mind here that 

s3 (X, + pXJ3 = L-3 = n* 

The structure of function Fl*a for the commensurabilities considered (see Table 1) are such 

that the third and the fifth equations in (3.1) are satisfied for the values of the angular 
variables Y, and Y, shown in Table 2, and, thus, there are 16 types of solutions. 

Table 2 

1 0 5 
2 ?l!? 
3 n 0 ; 

4 3n/? 8 

- 

- 

F; 

3x/2 

For the values indicated in Table 2 for the angular variables Y? and Y, the variables X2 

and x, are constants and, consequently, the orbit's eccentricity e and inclination i are 

constants. The dependency between e and i is found from the fourth equation in (3.11, which, 

allowing for relations (2.1), we write as 

x 
CJ (e, i)’ ___ 

es,* iVa*(i - e2) [ 
ecosi% -(I-G)sinis 

I 
=O 

Apparently, this equation was first obtained by Charlier in connection with the three-body 

problem /7/ and was studied by many authors /8-13/ by numerical methods. In the problem 

being analyzed the solution of the third equation in (3.1) was determined numerically for 

eccentricity in the range O<e < 1.0 and inclination in the range O<i<n, where terms 

up to e1° were retained in the expansions of Cr.', and St*"' (the theoretical limit of the 

convergence of the expansions mentioned equals e = 0.6627 /7/j. 

The form of the triaxial ellipsoid was characterized by a parameter x defining the polar 

contraction of the ellipsoid and a parameter x1 defining the equatorial contraction of the 

ellipsoid. Parameter x1 was chosen in the form x,Zxx2, i.e., the ratio between the con- 

tractions was retained the same as obtains for a planet of the Earth group. The calculation 

results are shown in Figs. l-4 as the curves @ (e, i) = 0. In Fig.1 the curves correspond 

to commensurability l/l and to x = IO+. The solid curve refers to solutions of type 2, 4, 

5, 7, 10, 12, 13, 15, while the dash-dotted curve refers to solutions of type 1, 3, 6, 8, 9, 

11, 14, 16 (see Table 2). The curves in Figs.2 and 3 correspond to commensurability l/l and 

to x = 10-z. The solid curves refer to solutions of type 1, 3, 9, 11 (in Fig.21 and type 2, 

4, 10, 12 (in Fig.3), while the dash-dotted curves refer to solutions of type 6, 8, 14, 16 

(in Fig.21 and type 5, 7, 13, 15 (in Fig.3). Finally, in Fig.4, corresponding to commensura- 

bility l/4 and to x = 10-2, the solid curves refer to solutions of type 1, 3, 9, 11, while 

the dash-dotted curves refer to solutions of type 6, 8, 14, 16; the curves corresponding to 
the solution of the equation JF I*ldH := 0 are shown by the dashed lines. Solutions of theequa- 
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tion @(e,i) = 0 for other commensurabilities do not differ qualitatively from those shown in 

Figs.l-4. The curves shown in Figs.l-4 define a family of solutions for which 1', = const. 

Fig. 1 Fig.2 

; 0.5 1 0 05 7 

Fig.3 Fig.4 

Let us now consider the sixth equation in (3.1). To obtain the steady-state solution 

y3 = Const of this equation it is necessary that the average motion IL* equal 

n* = Sip i x (#,* / BL + (sp-‘)dF,* / aH) (3.2) 

In the expression we have taken into account that a,?,* /aG = 0 on the curves cl], (e, i) m-y 0. 

Finally, the variation of I',, being the fast variable, on a steady-state solution is deter- 

mined by the second equation in (3.1) with a substitution of the expression found for n*. As 

a result we obtain 
Y,' ~7 (1 / p)(l + xdF,* / Wj 

The steady-state solutions obtained are synodic, i.e., after the passing of a period T 
the relative position of the material point and the triaxial ellipsoid in the rotating co- 

ordinate system is repeated. Although the arguments of the pericenter yz and of the 

Delaunay anomaly Y, for the steady-state solution found retain constant values, the orbit's 

node is shifted even if we do not take into account the short-period terms of the perturbing 

function. Thus, the steady-state solutions found generate conditionally-periodic solutions. 

Analogous solutions in the three-body problem have come to be called solutions of Schwarzschild 

type /8/. These solutions differ from the Poincar6 solutions of the third kind in which after 

the passing of one period the relative positions are repeated in the absolute coordinate 

system and, consequently, the orbit's node is fixed. 

4. Conditionally-periodic and periodic solutions. Thus, with due regard to 
the short-period terms of the perturbing function F 1 the solutions are steady-state: the 

variation of the orbital elements are of an oscillatory nature relative to their steady-state 

values. The orbit's node precesses in the rotating coordinate system and, therefore, the 

solutions obtained are essentially conditionally-periodic. In order that the solutions found 

be periodic Poincarg solutions of the third kind, it is necessary that the condition Q' = 

--xaF,* I aH = 0 be fulfilled, i.e., 

~'1 (e, i) = [a* (1 - ez)l-'/-(sin i)-‘iIF,* / t/i = 0 (4.1) 

Equation (4.1) was solved numerically; the resulting curves (D(e, i) = 0 are shown by dashed 

lines in Figs. l-4. Thus, for the parameter values e, and i,, corresponding to points of 
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intersection of curves 6, (e, i) = 0 and @I (e, i) = 0, there will hold y,' = 1 /p and, after 
(p i- q) == s orbits of the mass point, the following will take their initial values: the 
variable Y,, being a basic fast variable, and, consequently, the short-period perturbations 
in all the orbital elements corresponding to the steady-state solutions. The periodic solu- 
tions found exist for sufficiently small x. The period T, of the periodic solutions found 

equals ST, where T is the circulation period of the mass point for a given commensurabil- 
ity sip. We remark that the period of the generating periodic solutions differs from 
periodTsincethe averagemotion n * differs from the exact commensurable value .s//) on the gen- 
erating (steady-state) solutions when ay,* I a~ :.= 0 and aF,* I aH = 0 . 

5. Concluding notes. Thus, in all the low-order commensurabilities examined there 
exist families of Schwarzschild-type periodic solutions, i.e., conditionally-periodic solutions. 
For parameter value x=10-3 (typical for the Earth-group planets) the majority of these solu- 
tions have an orbit inclination close to 1.108 and 2.033 (the precise value depends on e and 
x and on the commensurability type S/P). The Poincari! periodic solutions of the third kind 

exist only for values e, and i. corresponding to the points of intersection of curves 
o((e,i)=O (solid and dash-dotted lines) and curves o,,(e,i)=O (dashed lines) in Fig.l-4. In 
view of the fact that to the points of intersection of the curves mentioned correspond the 
values ccl > 0.8, exceeding the theoretical limit of convergence (e=0.6627) of the expansions 
used, the question of the existence of periodic Poincarg solutions of the third kind in the 
strict sense remains open. In addition, the cases of small eccentricity and inclination, as 
well as the limit cases e-+O,e+l,i-0 and i-n ,require a separate analysis. 
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